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Chapter 7. Symmetry Labeling of Molecular Energies 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(1998), Chap. 6, and Bunker and Jensen (2005), Chap. 7.  

7.1 Hamiltonian Symmetry Operations 
We have seen in section 6.1.4 of the previous chapter that any elements of the CNPI 
group, and therefore any elements of the MS group, associated with a given molecule 
commute with the corresponding molecular Hamiltonian. That is, given a symmetry 
operator R  we have 
 
 Ĥ 0 ,R!" #$ = 0. (7.1) 
 
We also saw that this implies that if a wave function !  of the Hamiltonian is 
transformed by R  such that ! R = R! , then this transformed function is also a wave 
function of the Hamiltonian with the same energy level as the original function, since 
 
 Ĥ 0! n

R = Ĥ 0R! n = RĤ
0! n = REn

0! n = En
0! n

R ,  (7.2) 
 
where En

0  is the energy associated with  the wave function ! n . For a non-degenerate 
energy level, this in turn implies that  
 
 ! n

R = c! n ,  (7.3) 
 
with c  some constant. As we will now see, the determination of the different values that 
this constant can take is central to the use of symmetry labels, associated with each 
irreducible representation of the MS group, for identifying the energy levels of a 
molecule. 

7.1.1 Non-degenerate Energy Levels 
Consider again the case of a MS group operator R  acting on a wave function ! n  of non-
degenerate energy level En

0 . However, because of the group axioms that states that both 
Rq , with q  and integer, and the identity E  must be part of the group, it follows that for 
some integer m  we must have 
 
 Rm = E. (7.4) 
 
We therefore find from equation (7.3) that 
 
 Rm! n = c

m! n = E! n =! n ,  (7.5) 
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or alternatively 
 
 c = 1m .  (7.6) 
 
For example, for the permutation 12( )  we find that c = ±1 . 
 
Example 
Consider the following three fictitious wave functions for the water molecule (the protons 
are labeled 1 and 2) 
 

 

! 1 = sin X1 " X2( )
! 2 = cos X1 " X2( )
! 3 = sin X1 + X2( ).

 (7.7) 

 
Determine the constants associated with each operator of the MS group for this molecule, 
and use the corresponding character table to determine the irreducible representation 
generated by the wave functions. 
 
Solution  
The MS group for this molecule is C2v M( )  and its character table is given in Table 7-1. 
Applying the different operators to the wave functions we have 
 

 

! 1
E = sin X1 " X2( ) =! 1

! 1
12( ) = sin X2 " X1( ) = "! 1

! 1
E#

= sin X2 " X1( ) = "! 1

! 1
12( )# = sin X1 " X2( ) =! 1,

 (7.8) 

 
and similarly 
 

 
! 2

E =! 2
12( ) =! 2

E"

=! 2
12( )" =! 2

! 3
E =! 3

12( ) = #! 3
E"

= #! 3
12( )" =! 3.

 (7.9) 

Table 7-1 – The character table of the C2v M( )  group. 

C2v M( ) :  E  12( )  E!  12( )!  
A1 : 1  1  1  1  
A2 : 1  1  !1 !1 
B1 : 1  !1 !1 1  
B2 : 1  !1 1  !1 
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It is therefore apparent that the characters of the different wave functions when acted 
upon with the MS group operators are such that if we collect the different constants ci

R , 
with i = 1,2,3  for the wave functions, we have 
 

 ci
E  ci

12( )  ci
E!

 ci
12( )!   

! 1 :  1  !1 !1 1  = B1  
! 2 : 1  1  1  1  = A1  
! 3 :  1  1  !1 !1 = A2  

 
And, as indicated in the last column, ! 1,! 2 , and ! 3  have the symmetry of B1, A1 , and 
A2 , respectively. Because the energy levels are different for the three wave functions 
(they are non-degenerate), then we find that we can label the energy levels using the 
different irreducible representations of the MS group.   

7.1.2 Degenerate Energy Levels 

When an energy level En
0  is l-fold  degenerate, there are l  wave functions  ! n1,…,! nl  

that transform into linear combinations of themselves when acted upon by an operator R  
of the MS group. This is expressed mathematically as follows 
 

 R! ni = D R[ ]ij! nj
j=1

l

" ,  (7.10) 

  
where D R[ ]  is the representation matrix associated to R . Now imagine that we are 
forming another set of l-fold  degenerate functions !nk  using an orthogonal matrix A  
with 
 

 !nk = Aki" ni
i=1

l

# .  (7.11) 

 
Evidently these new functions are also wave functions of the Hamiltonian with the same 
energy En

0  as the original wave functions ! ni . We would like to find out what 
representation of the MS group the wave functions !nk  generate. If we denote the new 
representation matrix associated to R  with D R[ ] , then 
 

 R!nk = D R[ ]kr !nr
r=1

l

" . (7.12) 

 
But using equations (7.11) and (7.10) we can also write 
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R!nk = AkiR" ni

i=1

l

#

= Aki D R[ ]ij" nj
j=1

l

#
i=1

l

# ,
 (7.13) 

  
and we substitute for ! nj  using the inverse of equation (7.11) to get 
 

 

R!nk = Aki D R[ ]ij Ajr
"1!nr

r=1

l

#
j=1

l

#
i=1

l

#

= AkiD R[ ]ij Ajr
"1( )!nr

i, j
#

r
#

= AD R[ ]A"1( )kr !nr
r=1

l

# .

 (7.14) 

 
Comparing this result with equation (7.12) reveals that the new representation D R[ ]  is 
related to the original representation D R[ ]  via a similarity transformation. That is,  
 
 D R[ ] = AD R[ ]A!1.  (7.15) 
 
Since we already know that the character of a matrix is invariant under a similarity 
transformation (see equation (6.50) of the previous chapter), then we find the important 
result that the character of a representation generated by a set of degenerated wave 
functions of the Hamiltonian is unique and can be used to reduce it to its irreducible 
components (see equations (6.59) and (6.60) of Chapter 6). The corresponding 
degenerated energy level can thus be labeled with the irreducible representations of the 
MS group. This result is an extension of what was previously found for non-degenerate 
energy levels. 

7.2 Projection Operators 
Let us again consider a set of wave functions ! js  that generate the irreducible 

representations ! j  of dimension (i.e., degeneracy) l j , with  s = 1,…,l j . Any other set (of 
similar size) of functions !n  generating a reducible representation !  can expressed as a 
linear combination of the ! js  (because they form a basis) with 
 

 !n = An, jk" jk
k=1

l j

#
j
# . (7.16) 

 
(Note: The notation of equation (7.16) is potentially confusing, but it is understood that 
An, jk  is the element of a matrix A  belonging to row n  and column jk . That is, the 
indices j  and k  taken together form a single index. The implication is that the column 
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vector representation of ! jk  is such that its first l1  elements belong to j = 1  and 

 k = 1,…,l1 , the next l2  elements belong to j = 2  and  k = 1,…,l2 , and so on.) Equation 
(7.16) can also be inverted to give 
 
 ! jk = Ajk ,n

"1 #n
n
$ . (7.17) 

 
Now consider the following operator 
 

 Pmm
!i = li

h
D!i R[ ]mm

" R
R
#  (7.18) 

 
where D!i R[ ]  is the matrix associated to the operator R  in the ! i  irreducible 
representation of the corresponding symmetry group of order h . We now apply this 
operator to a function of the !n  set 
 

 

Pmm
!i "n =

li
h

D!i R[ ]mm
# R"n

R
$

=
li
h

D!i R[ ]mm
# R An, jk% jk

k=1

l j

$
j
$

&

'(
)

*+R
$

= An, jk
li
h

D!i R[ ]mm
# R% jk( )

R
$

k=1

l j

$
j
$

= An, jk
li
h

D!i R[ ]mm
# D! j R[ ]ks% js

s=1

l j

$
&

'(
)

*+R
$

k=1

l j

$
j
$

= An, jk % js
li
h

D!i R[ ]mm
# D! j R[ ]ks

R
$&

'(
)
*+s=1

l j

$
k=1

l j

$
j
$ ,

 (7.19) 

 
where equations (7.16) and (7.10) (suitably rewritten) were used. We can now make use 
of the GOT (i.e., equation (6.54) of Chapter 6) to find that  
 

 
Pmm

!i "n = An, jk # js $ ij$mk$ms( )
s=1

l j

%
k=1

l j

%
j
%

= An,im# im .
 (7.20) 

 
We therefore find that the projection operator Pmm

!i  when applied to !n  produces the 
part of !n  that belongs to the m th  row of the ! i  irreducible representation. In other 
words, given the matrix irreducible representations D!i R[ ]  of a group we can use the 
projection operator to break down an arbitrary set of functions !n  into the irreducible 
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representations-generating wave functions ! im  that compose it. For example, if the 
functions !n  do not contain the ! i  irreducible representation, then equation (7.20) will 
yield 
  
 Pmm

!i "n = 0. (7.21) 
 
It is important to emphasize the fact we need to know the matrices D!i R[ ]  in order to 
use this projection operator. On the other hand, is possible to define a simpler (and less 
powerful) projection operator from equation (7.18) with 
 

 P!i = Pmm
!i

m
" = li

h
#!i R[ ]$ R

R
"  (7.22) 

 
For example, we can calculate from equation (7.20) that 
 
 P!i"n = An,im# im

m
$ .  (7.23) 

 
So, when applied to !n  this projection operator will yield a function that belongs to ! i , 
but not belonging to any particular row m . However, it will still be able to tell us if !n  
does not contain any functions belonging to ! i , since in this case 
 
 P!i"n = 0,  (7.24) 
 
from equation (7.21). It is important to note that for a one-dimensional irreducible 
representation the operators of equations (7.18) and (7.22) are one and the same. 
 
Example 
Let us return to our previous example of the water molecule, but this time with three new 
wave functions defined as 
 

 

!a = sin X1 " X2( ) + sin X1 + X2( )
!b = sin X1 " X2( ) + cos X1 " X2( )
!c = sin X1 + X2( ) " sin X1 " X2( ),

 (7.25) 

 
which we assume to be degenerate (i.e., we now specify that ! 1,! 2 , and ! 3  are also 
degenerate) and spanning a reducible representation ! . We seek to determine the 
combinations of !a , !b , and !c  that belong to the different irreducible representations 
of the MS group of the water molecule (i.e., C2v M( ) ). 
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Solution 
Using the character table for C2v M( )  (i.e., Table 7-1) we can calculate the 3! 3  
matrices D! R[ ]  corresponding to the transformation brought by the operators of the 
group on !a , !b , and !c . For example, we can verify from equations (7.25) that 
 

 

 

E
!a

!b

!c

"

#

$
$
$

%

&

'
'
'
=

!a

!b

!c

"

#

$
$
$

%

&

'
'
'
=
1 0 0
0 1 0
0 0 1

"

#

$
$
$

%

&

'
'
'

D( E[ ]
! "# $#

!a

!b

!c

"

#

$
$
$

%

&

'
'
'
.

12( )
!a

!b

!c

"

#

$
$
$

%

&

'
'
'
=

!c

!b +!c ) !a

!a

"

#

$
$
$

%

&

'
'
'
=

0 0 1
)1 1 1
1 0 0

"

#

$
$
$

%

&

'
'
'

D( 12( )"# %&

! "# $#

!a

!b

!c

"

#

$
$
$

%

&

'
'
'

E*

!a

!b

!c

"

#

$
$
$

%

&

'
'
'
=

)!a

!b +!c ) !a

)!c

"

#

$
$
$

%

&

'
'
'
=

)1 0 0
)1 1 1
0 0 )1

"

#

$
$
$

%

&

'
'
'

D( E*"# %&

! "## $##

!a

!b

!c

"

#

$
$
$

%

&

'
'
'
,

 (7.26) 

 
and 
 

 

D! 12( )"#$ %& = D
! 12( )#$ %&D

! E"#$ %&

=
0 0 1
'1 1 1
1 0 0

#

$

(
(
(

%

&

)
)
)

'1 0 0
'1 1 1
0 0 '1

#

$

(
(
(

%

&

)
)
)
=

0 0 '1
0 1 0
'1 0 0

#

$

(
(
(

%

&

)
)
)
.
 (7.27) 

 
The characters of these matrices are easily determined to be 
 
 ! E[ ] = 3, ! 12( )"# $% = 1, ! E&"# $% = '1, ! 12( )&"# $% = 1.  (7.28) 

 
Using equation (6.60) of Chapter 6 and Table 7-1, we find that 
 

 
aA1 =

1
4

!" R[ ]! A1 R[ ]#
R
$

=
1
4
3+1%1+1( ) = 1

 (7.29) 
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aA2 =
1
4

!" R[ ]! A2 R[ ]#
R
$

=
1
4
3+1+1%1( ) = 1

aB1 =
1
4

!" R[ ]! B1 R[ ]#
R
$

=
1
4
3%1+1+1( ) = 1

aB2 =
1
4

!" R[ ]! B2 R[ ]#
R
$

=
1
4
3%1%1%1( ) = 0.

 (7.30) 

 
We can therefore write 
 
 ! = A1" A2 " B1,  (7.31) 
 
the B2  representation is not generated by ! . The functions belonging to the three 
realized irreducible representation are determined through equation (7.22) and the 
character table of the MS group. For example, using !a  we have 
 

 

PA1!a =
1
4

" A1 R[ ]# R
R
$%

&
'

(
)
*
!a =

1
4
E + 12( ) + E# + 12( )#{ }!a

= 1
4

!a +!c +!a +!c( ) = 0

PA2!a =
1
4

" A2 R[ ]# R
R
$%

&
'

(
)
*
!a =

1
4
E + 12( )+ E# + 12( )#{ }!a

= 1
4

!a +!c +!a +!c( ) = 1
2

!a +!c( )

PB1!a =
1
4

" B1 R[ ]# R
R
$%

&
'

(
)
*
!a =

1
4
E + 12( )+ E# + 12( )#{ }!a

= 1
4

!a +!c +!a +!c( ) = 1
2

!a +!c( )

PB2!a =
1
4

" B2 R[ ]# R
R
$%

&
'

(
)
*
!a =

1
4
E + 12( ) + E# + 12( )#{ }!a

= 1
4

!a +!c +!a +!c( ) = 0.

 (7.32) 
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Applying P!i  to !c  would yields the same results. Finally, projecting !b  onto each 
irreducible representation gives 
 

 

PA1!b =
1
4

" A1 R[ ]# R
R
$%

&
'

(
)
*
!b =

1
4
E + 12( ) + E# + 12( )#{ }!b

= 1
4

!b + !b +!c +!a( ) + !b +!c +!a( ) +!b,- ./ = !b +
1
2

!c +!a( )

PA2!b =
1
4

" A2 R[ ]# R
R
$%

&
'

(
)
*
!b =

1
4
E + 12( )+ E# + 12( )#{ }!b

= 1
4

!b + !b +!c +!a( )+ !b +!c +!a( )+!b,- ./ = 0

PB1!b =
1
4

" B1 R[ ]# R
R
$%

&
'

(
)
*
!b =

1
4
E + 12( )+ E# + 12( )#{ }!b

= 1
4

!b + !b +!c +!a( )+ !b +!c +!a( ) +!b,- ./ =
1
2

!a +!c( )

PB2!b =
1
4

" B2 R[ ]# R
R
$%

&
'

(
)
*
!b =

1
4
E + 12( ) + E# + 12( )#{ }!b

= 1
4

!b + !b +!c +!a( ) + !b +!c +!a( )+!b,- ./ = 0.

 (7.33) 

 
Summarize these results, we find three functions 
 

 

! A1( ) = "b +
1
2

"c # "a( ) = cos X1 # X2( )

! A2( ) = 1
2

"a +"c( ) = sin X1 + X2( )

! B1( ) = 1
2

"a # "c( ) = sin X1 # X2( ),

 (7.34) 

 
which respectively transform as the A1, A2 , and B1  representations. A careful look at these 
functions reveals them to be equaled to our previous ! 2 ,! 3, and ! 1 , respectively, which 
we also previously determined to be transforming as the A1, A2 , and B1  representations. 
This is an example of the power of the projection operator for identifying underlying 
symmetries in otherwise arbitrary functions. 

7.2.1  The Symmetry of a Product of Functions 
As we saw earlier when dealing with the molecular Hamiltonian and its simplifications 
(e.g., the Born-Oppenheimer approximation), the complete wave functions corresponding 
to the rovibronic states of a molecule can be approximated by the product of electronic, 
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vibration, and rotational wave functions. It is therefore important to determine the 
symmetry and character of a product of functions.  
Let us consider two representations !m  and !n  of r-fold  and s-fold  degeneracy, 
respectively. We also assume them to be generated by corresponding sets of wave 
functions !mi  and !nj  (i.e.,  i = 1,… ,r  and  j = 1,… , s ) of energy levels Em  and En , 
respectively. We already know from equation (7.10) that under an element R  of the MS 
group functions from these sets will transform as follows 
 

 
R!mi = D"m

R[ ]ik !mk
k=1

r

#

R!nj = D"n R[ ] jl !nl
l=1

s

# .
 (7.35) 

 
If we denote the representation generated by all possible r ! s  products of pairs of 
functions !mi ,!nj( )  by !mn  
 

 R !mi!nj"# $% = D&m

R[ ]ik D&n R[ ] jl !mk!nl
l=1

s

'
k=1

r

' ,  (7.36) 

 
but if we further define 
 
 ! ij = "mi"nj ,  (7.37) 
 
then we can write 
 

 R! ij = D"mn

R[ ]ij ,kl! kl
l=1

s

#
k=1

r

# .  (7.38) 

 
We identify (and define) the matrix D!mn

R[ ]  by the direct product 
 
 D!mn

R[ ] = D!m

R[ ]" D!n R[ ],  (7.39) 
 
or 
 
 D!mn

R[ ]ij ,kl = D!m

R[ ]ik D!n R[ ] jl .  (7.40) 
 
For example, we represent the direct product of two 2 ! 2  matrices A and B  with 
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 A! B =
a11 a12
a21 a22
"

#
$

%

&
' !

b11 b12
b21 b22
"

#
$

%

&
' =

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

"

#

$
$
$
$

%

&

'
'
'
'

.  (7.41) 

 
We see that the first and third indices of D!mn

R[ ]ij ,kl  specify the quadrant of the resulting 
matrix, while the second and forth indices specify which element of the quadrant is 
selected. From this definition we can easily proceed to calculate the character of the 
direct-product matrix with 
 

 
!"mn

R[ ] = D"mn

R[ ]ij ,ij
l=1

s

#
k=1

r

# = D"m

R[ ]ii D"n R[ ] jj
j=1

s

#
i=1

r

#
= !"m

R[ ]!"n R[ ].
 (7.42) 

 
The character of a direct product matrix is thus simply the product of the characters of the 
two matrices involved. We also write symbolically 
 
 !mn = !m "!n .  (7.43) 
 
Example   
Consider the two pairs of degenerate functions 
 

 
!1 = X1 " X2

!2 =
1
3
2X3 " X1 " X2( ),  (7.44) 

 
and 
 

 
!a = Y1 "Y2

!b =
1
3
2Y3 "Y1 "Y2( ).  (7.45) 

 
a) Show that !1,!2( )  (and therefore !a ,!b( ) ) generates the E  representation of the 
C3v M( )  group (see Table 7-2). 

b) Determine the representation generated by the products !1,!2( ) " #a ,#b( ) , and 
decompose it into a sum of the irreducible representations of C3v M( ) . 
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Table 7-2 – The character table of the C3v M( )  group. 

C3v M( ) : E  123( )
132( )  23( )!

13( )!

12( )!
 

A1 : 1 1 1 
A2 : 1 1 !1 
E : 2 !1 0 

 
Solution. 
a) Applying one element from each of the three classes of operators from the C3v M( )  
group to the functions !1  and !2  we have 
 

 

E!1 = !1

E!2 = !2

123( )!1 = X3 " X1 = " 1
2

!1 " 3!2( )
123( )!2 =

1
3
2X2 " X3 " X1( ) = " 1

2
3!1 +!2( )

23( )# !1 = "X1 + X3 = " 1
2

!1 " 3!2( )
23( )# !2 = " 1

3
2X2 " X1 " X3( ) = 1

2
3!1 +!2( ).

 (7.46) 

  
From this, we easily find that 
 
 !" E[ ] = 2, !" 123( )#$ %& = '1, !" 23( )(#$ %& = 0,  (7.47) 

 

which makes it clear, through a comparison with Table 7-2, that ! = E . That is, the set 
!1,!2( ) , and therefore !a ,!b( )  also, generates the E  representation of the C3v M( )  

group. 

b) We know from equations (7.42), (7.43), and (7.47) that  
 
 !"#$

E[ ] = 4, !"#$

123( )%& '( = 1, !"#$

23( ))%& '( = 0.  (7.48) 

 
Using equation (6.60) of the previous chapter  
 

 ai =
1
6

!"#$

R[ ]!"i R[ ]%
R
& ,  (7.49) 



131 

 
we find 
 

 

aA1 =
1
6
1 ! 4 + 2 1 !1( ) + 3 1 !0( )"# $% = 1

aA2 =
1
6
1 ! 4 + 2 1 !1( ) + 3 &1 !0( )"# $% = 1

aE =
1
6
2 ! 4 + 2 &1 !1( ) + 3 0 !0( )"# $% = 1,

 (7.50) 

  
or alternatively 
 
 !"# = A1$ A2 $ E. (7.51) 
 
If we now apply the projection operators (see equation (7.22)) for the A1  and A2  
irreducible representations to some of the product functions !i"#  we could show through 
some simple mathematics that 
 

 
PA1!1"a # !1"a +!2"b( )
PA2!1"b # !1"b $ !2"a( ).

 (7.52) 

 
In a similar manner, if we use equation (7.18) for the projection operator for, and 
equations (6.44) for the matrices of, the E  irreducible representation of C3v M( )  it can be 
shown that 
 

 
P11
E!1"a # !1"a $ !2"b( )

P22
E!1"b # !1"b +!2"a( ).

 (7.53) 

 
That is, the functions !1"a +!2"b( ) , !1"b # !2"a( ) , and the pair of functions 

!1"a # !2"b( ), !1"b +!2"a( )$% &'  respectively generate the A1 , A2 , and E  irreducible 
representations. In other words, the symmetric product functions !1"a , !2"b , and 
!1"b +!2"a( )  generate the representation A1! E , while the antisymmetric product 

functions !1"b # !2"a( )  generate the representation A2 .  

It is usually written that the symmetric product is 
 
 E[ ]2 = E! E[ ] = A1" E,  (7.54) 
 
and that the antisymmetric product is 
 
 E{ }2 = E! E{ } = A2 .  (7.55) 



132 

 
It can be shown1 that the character of the operators in the symmetric and antisymmetric 
product representations can be calculated with 
 

 
! E"E[ ] R[ ] = 1

2
! E R[ ]( )2 + ! E R2#$ %&#

$
%
&

! E"E{ } R[ ] = 1
2

! E R[ ]( )2 ' ! E R2#$ %&#
$

%
&,

 (7.56) 

 
as can be verified for the preceding example. In general, the character of the operators in 
the symmetric nth  power of the degenerate irreducible representation E  is given by 
 

 ! E[ ]n R[ ] = 1
2

! E R[ ]! E[ ]n"1 R[ ] + ! E Rn#$ %&#
$

%
&.  (7.57) 

 
An important question when considering a representation !  resulting from the direct 
products of functions generating two irreducible representations !n

"  and !m  is whether it 
contains the totally symmetric representation ! s( )  (!n

"  is the irreducible representation 
whose matrix representation D!n R[ ]"  is the complex conjugate of that of !n , i.e., 
D!n R[ ] ). We know from equation (7.42) that 
 
 !" R[ ] = !"n R[ ]# !"m R[ ],  (7.58) 
 
and the from equation (6.60) that 
 

 a! s( )
=
1
h

"! R[ ]
R
# . (7.59) 

 
We now insert equation (7.58) in equation (7.59) to get 
 

 a! s( )
=
1
h

"!n R[ ]# "!m R[ ]
R
$ ,  (7.60) 

 
which implies from the little orthogonality theorem (i.e., equation (6.56)) that 
 

 a! s( )
=

1, if !m = !n

0, if !m " !n ,
#
$
%

 (7.61) 

 
since if !m

"  is a realized irreducible representation, then so is !n . 

                                                
1 M. Hamermesh 1964, Group Theory and its Applications to Physical Problems, 
(Reading: Addison-Wesley), pp. 128-134. 
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7.3 The Vanishing Integral Rule 
Let us suppose that we have a molecular Hamiltonian Ĥ 0  for which we have previously 
determined the energy levels En

0  and corresponding wave functions ! n
0 . We assume that 

the wave function ! n
0  generate the representation !n .  

We would like to know which of the molecular states and energy levels will be coupled if 
a perturbation ˆ !H  is added to the system. In other words, will the perturbation allow the 
molecule to go from a given state to another? This question will be answered by 
calculating the matrix elements of the total Hamiltonian Ĥ = Ĥ 0 + !H  with 
 

 
Hmn = ! m

0 " Ĥ 0 + ˆ #H( )! n
0 d$%

= &mnEn
0 + #Hmn ,

 (7.62) 

 
where 
 
 !Hmn = " m

0 # ˆ !H " n
0 d$% ,  (7.63) 

 
with d!  the volume element of the relevant space. That is, the matrix element !Hmn  has 
to be non-zero for a transition to be possible between two different states m and n . It 
turns out that we can easily find out whether the integral in equation (7.63) vanishes or 
not by making use of the fact that molecular energies can be labeled with the irreducible 
representations of the MS group (see Section 7.1). To show how this is done, let us define 
a function f  such that 
 
 f S( ) =! m

0 " ˆ #H ! n
0 ,  (7.64) 

 
with S  the coordinates of some point in the system’s space. If we act on this function 
with some element Ri  of the group G  (of order h ), then we can write (see equation 
(6.9)) 
 
 Ri f S( ) = f !S( ) = f Ri S( ).  (7.65) 
 
But since the integration in equation (7.63) is performed over all space 
 
 f S( )d!" = f #S( )d #!" = f Ri S( )d!" = Ri f S( )$% &'d!" ,  (7.66) 
 
and therefore 
 

 h f S( )d!" = Ri f S( )
i
#$
%&

'
()
d!" . (7.67) 
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We can then rewrite equation (7.63) as   
 

 !Hmn = " m
0 # ˆ !H " n

0 d$% =
1
h

Ri " m
0 # ˆ !H " n

0( )
i
&'
()

*
+,
d$% .  (7.68)   

 
If the perturbation ˆ !H  generates the representation !" , then we know from the previous 
section that ! m

0 " ˆ #H ! n
0  will generate the following representation 

 
 !"mn = "m

# $ !" $ "n .  (7.69) 
 
(Note that ! m

0 "  generates !m
" , which does not necessarily have characters that are 

complex conjugate of those of !m .) Let us now apply the projection operator for the 
totally symmetric representation 

 P! s( )
=
1
h

Ri
i
"  (7.70) 

 
on the integrand of equation (7.63) to find that 
 

 P! s( )
" m

0 # ˆ $H " n
0( )d%& =

1
h

Ri " m
0 # ˆ $H " n

0( )
i
'(
)*

+
,-
d%& = $Hmn

= 0, if ! s( ) . $!mn

/ 0, if ! s( ) 0 $!mn

1
2
3

43
 (7.71) 

 
(see Section 7.2). We therefore find that 
 
 !Hmn = " m

0 # ˆ !H " n
0 d$% = 0  (7.72) 

 
and the perturbation ˆ !H  will not couple two states when 
 
 ! s( ) " !m

# $ %! $ !n .  (7.73) 
 
This is the so-called vanishing integral rule. In particular, the condition spelled out in 
equations (7.72) and (7.73) reduces to     
 
 !m " !n  (7.74) 
 
when ˆ !H  is totally symmetric (i.e., transforms as ! s( ) , see below) in the group G . 

If the energy levels Em  are r-fold  degenerate with wave functions ! mi
0  (for  i = 1,…,r ) 

and when ˆ !H  is totally symmetric, then the previous result can be further complemented 
(with a judicious use of the GOT; see the Second Problem List) with the following rule 
 
 ! mi

0 " ˆ #H ! nj
0 d$% = 0  (7.75) 
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unless !m = !n  and i = j . 

Incidentally, we note that the fact that (from part of equation (7.62)) 
 
 Ĥmn

0 = ! m
0 "Ĥ 0! n

0 d#$ = %mnEn
0  (7.76) 

 
implies that the corresponding element of the unperturbed Hamiltonian matrix will cancel 
unless !m = !n . This not a surprising result since we built the basis ! m

0{ }  from a set of 
orthogonal wave functions of this Hamiltonian. However, this also means that the 
Hamiltonian Ĥ 0  transforms as the totally symmetric representation ! s( )  of the MS 
group. We could have easily predicted this from the fact that Ĥ 0  commutes with the 
operators of the MS group (see equation (7.1)), and is therefore invariant under their 
applications. 
 
Example 
Consider the two wave functions  
  

 
! A2( ) = sin X1 + X2( )
! B1( ) = sin X1 " X2( )

 (7.77) 

 
introduced in an earlier example concerning the C2v M( )  group. It is easy to see that the 
integral of these functions over all space will cancel out. That is, 
 
 sin X1 + X2( )dX1dX2!"

"

# =
!"

"

# sin X1 ! X2( )dX1dX2!"

"

#!"

"

# = 0,  (7.78) 

  
since both integrands are odd. We can also explain this result with the vanishing integral 
rule by saying that these functions are not totally symmetric in the C2v M( )  group, where 

! s( ) = A1 , since they transform as A2  and B1 , respectively. Likewise, the product of the 
two functions generates the A2 ! B1 = B2  irreducible representation (see Table 7-1) and 
its integral will also cancel out for the same reason. This can also be verified with the 
following 
 

 
I = sin X1 + X2( )sin X1 ! X2( )dX1dX2!"

"

#!"

"

#
=
1
2

cos 2X2( ) ! cos 2X1( )$% &'dX1dX2!"

"

#!"

"

# = 0.
 (7.79) 

 
On the other hand, the integral of the squares of both functions will not cancel out 
because 
 
 A2 ! A2 = B1! B1 = A1 = " s( ),  (7.80) 
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as can also be verified with 
 

 

I1 = sin2 X1 + X2( )dX1dX2!"

"

#!"

"

#
=
1
2

1! cos 2 X1 + X2( )$% &'{ }dX1dX2!"

"

#!"

"

# ( 0

I2 = sin2 X1 ! X2( )dX1dX2!"

"

#!"

"

#
=
1
2

1! cos 2 X1 ! X2( )$% &'{ }dX1dX2!"

"

#!"

"

# ( 0.

 (7.81) 

 
It can be seen that the vanishing integral rule is closely related to the more common 
concept of the evenness or oddness of the integrand. 
In general, the vanishing integral rule cannot tell us what is the value of an integral, but it 
can tell us when it cancels out. And this is of fundamental importance for determining the 
selection rules for transitions between different molecular states.  
 
 
 
 


